## 3. Interação entre 2-piridinoformamida tiossemicarbazonas e os íons Cu(II) e Fe(III) em solução aquosa

Investimos no estudo, em solução aquosa, da interação entre 2-piridinoformamida tiossemicarbazona (H2Am4DH) e seus derivados N(4)-metil (H2Am4M), N(4)-etil (H2Am4E) e N(4)-fenil (H2Am4Ph) e os íons Cu(II) e Fe(III). Esse estudo foi monitorado por espectroscopia de absorção na região do UV-vis. Para o cálculo das constantes de formação dos complexos foram levados em consideração os valores das constantes de formação calculadas inicialmente para as tiossemicarbazonas livres.

## 3.1. Determinação das constantes de protonação de 2-piridinoformamida tiossemicarbazonas

Através de titulações potenciométricas, determinamos as constantes de formação de todas as espécies presentes no equilíbrio envolvendo 2-piridinoformamida tiossemicarbazona (H2Am4DH) e seus derivados N(4)-metil (H2Am4Me), N(4)-etil (H2Am4Et) e N(4)-fenil (H2Am4Ph), assim como os valores de pKa associados a cada ligante. Em solução aquosa, as tiossemicarbazonas existem em duas formas tautoméricas: tiona e tiol (Figura 3.1) [29,30,31]. Esses ligantes totalmente desprotonados, L<sup>-</sup> (2Am4DH<sup>-</sup>, 2Am4Me<sup>-</sup>, 2Am4Et<sup>-</sup> e 2Am4Ph<sup>-</sup>), podem ser protonados em N(3) ou no enxofre de tiolato, formando espécies neutras, HL (H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph), que podem aceitar um próton no nitrogênio da piridina, formando  $H_2L^+$  (H<sub>2</sub>2Am4DH<sup>+</sup>, H<sub>2</sub>2Am4Me<sup>+</sup>, H<sub>2</sub>2Am4Et<sup>+</sup> e H<sub>2</sub>2Am4Ph<sup>+</sup>).



Figura 3.1 - Equilíbrio tautomérico das 2-piridinoformamida tiossemicarbazonas (R = H, Me, Et ou Ph)

Uma solução de concentração  $1,0 \times 10^{-3}$  mol L<sup>-1</sup> de cada tiossemicarbazona, contendo 1% de DMSO, foi titulada, a 25 °C, com uma solução de KOH 1,0 x 10<sup>-1</sup> mol L<sup>-1</sup>, após adição de 1,0 mL de HCl 1,0 x 10<sup>-1</sup> mol L<sup>-1</sup> e de 10,0 mL de KNO<sub>3</sub> 1,2 mol L<sup>-1</sup>. HCl foi adicionado para protonar as tiossemicarbazonas em N(1) (ver Figura 3.1) e KNO<sub>3</sub> foi adicionado para manter a força iônica do meio em 0,1 mol L<sup>-1</sup>. Os dados das curvas potenciométricas obtidas foram tratados utilizando o programa HYPERQUAD [24,25], que forneceu o logaritmo da constante de formação das espécies HL e H<sub>2</sub>L<sup>+</sup>. Os equilíbrios que envolvem a formação de HL e H<sub>2</sub>L<sup>+</sup> são mostrados na Figura 3.2.



Figura 3.2 - Equilíbrios envolvidos na formação das espécies HL e  $H_2L^+$  (R = H, Me, Et ou Ph)

A partir dos logaritmos das constantes de formação fornecidas pelo programa HYPERQUAD, foram calculados os valores de pKa para as 2-piridinoformamida tiossemicarbazonas. Os equilíbrios envolvidos na desprotonação das tiossemicarbazonas são mostrados na Figura 3.3.



Figura 3.3 - Equilíbrios envolvidos na desprotonação das 2-piridinoformamida tiossemicarbazonas (R = H, Me, Et ou Ph)

A Figura 3.4 mostra as curvas de titulação potenciométrica teórica e experimental para as 2-piridinoformamida tiossemicarbazonas. Os resultados

estão em excelente concordância. Em todos os casos, observa-se uma inflexão quando o volume de KOH adicionado está em torno de 1,0 mL. Para H2Am4Ph, uma segunda inflexão é observada quando o volume de KOH adicionado está próximo de 2,0 mL.



Figura 3.4 - Curvas de titulação potenciométrica teórica e experimental para: (a) H2Am4DH, (b) H2Am4Me, (c) H2Am4Et e (d) H2Am4Ph

A Tabela 3.1 lista os valores dos logaritmos das constantes de protonação das espécies HL e  $H_2L^+$ , para H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, refinados até o menor desvio padrão ser obtido.

Tabela 3.1 – Logaritmo das constantes de protonação das espécies HL e  $H_2L^+$  presentes no equilíbrio envolvendo H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, a 25 °C

| Ligante | $\logeta_{ m HL}$   | $\logeta_{ m H_2L^+}$ |
|---------|---------------------|-----------------------|
| H2Am4DH | $10,\!96\pm0,\!02$  | $15,\!04\pm0,\!02$    |
| H2Am4Me | $11,\!56\pm0,\!02$  | $15,\!76\pm0,\!02$    |
| H2Am4Et | $11,53 \pm 0,04$    | $15{,}48 \pm 0{,}02$  |
| H2Am4Ph | $6{,}88 \pm 0{,}01$ | $8{,}92\pm0{,}02$     |

Para H2Am4DH, encontramos 9,12 x  $10^{10}$  e 1,10 x  $10^{15}$  para  $\beta_{\rm HL}$  e  $\beta_{\rm H_2L^+}$ , respectivamente. Para H2Am4Me e H2Am4Et, os valores obtidos são próximos e maiores que aqueles observados para H2Am4DH, provavelmente devido ao efeito doador de densidade eletrônica exercido pelo grupo ligado a N(4), que torna os sítios de protonação mais básicos. Os valores de  $\beta_{\rm HL}$  e  $\beta_{\rm H_2L^+}$  encontrados para H2Am4DH, H2Am4Me e H2Am4Et são próximos daqueles observados para 2-formilpiridina tiossemicarbazona e 2-acetilpiridina tiossemicarbazona, calculados por outros autores [18]. Para H2Am4Ph, encontramos 7,59 x  $10^6$  e 8,32 x  $10^8$  para  $\beta_{\rm HL}$  e  $\beta_{\rm H_2L^+}$ , respectivamente. Esses valores são menores que os demais, provavelmente devido ao efeito retirador de densidade eletrônica exercido pelo grupo fenil, ligado a N(4).

A partir dos valores obtidos de  $\beta_{HL}$  e  $\beta_{H_2L}$ , calculamos os pKa's de H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph. Os valores obtidos são listados na Tabela 3.2.

| Ligante | Ka <sub>1</sub>         | pKa <sub>1</sub> | Ka <sub>2</sub>          | pKa <sub>2</sub> |
|---------|-------------------------|------------------|--------------------------|------------------|
| H2Am4DH | 8,32 x 10 <sup>-5</sup> | 4,08             | 1,10 x 10 <sup>-11</sup> | 10,96            |
| H2Am4Me | 6,31 x 10 <sup>-5</sup> | 4,20             | 2,75 x 10 <sup>-12</sup> | 11,56            |
| H2Am4Et | 1,12 x 10 <sup>-4</sup> | 3,95             | 2,95 x 10 <sup>-12</sup> | 11,53            |
| H2Am4Ph | 9,12 x 10 <sup>-3</sup> | 2,04             | 1,32 x 10 <sup>-7</sup>  | 6,88             |

Tabela 3.2 - Valores de pKa calculados para H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, a 25 °C

A partir dos valores dos logaritmos das constantes de protonação das espécies em solução, log  $\beta_{\text{HL}}$  e log $\beta_{\text{H2L}}$ , e com o auxilio do programa Hyss [24], foram gerados diagramas de distribuição de espécies em função do pH para as tiossemicarbazonas (Figura 3.5). Os resultados obtidos para H2Am4DH, H2Am4Me e H2Am4Et são bastante semelhantes. Nesses casos, até aproximadamente pH 4, duas espécies coexistem em equilíbrio, H<sub>2</sub>L<sup>+</sup> e HL. A partir desse pH, uma única espécie passa a prevalecer, HL, até pH aproximadamente igual a 9, quando L<sup>-</sup> passa a coexistir com HL. O diagrama de distribuição de espécies de H2Am4Ph mostra um comportamento diferente. Em pH = 2, as espécies H<sub>2</sub>L<sup>+</sup> e HL estão presentes no equilíbrio em quantidades iguais. A partir desse pH, HL passa a predominar. Entre pH 4 e 5, HL é a única espécie presente. Em pH = 5, a espécie L<sup>-</sup> surge no equilíbrio coexistindo com HL. HL continua prevalecendo até pH = 7, quando L<sup>-</sup>, então, passa a predominar. A partir de pH = 8, L<sup>-</sup> passa a ser a única espécie presente no equilíbrio.



Figura 3.5 - Diagramas de distribuição de espécies em função do pH: (a) H2Am4DH, (b) H2Am4Me, (c) H2Am4Et e (d) H2Am4Ph

Em pH fisiológico (pH = 7,4), H2Am4DH, H2Am4Me e H2Am4Et comportam-se como espécies neutras, enquanto que H2Am4Ph coexiste na forma neutra e aniônica.

## Cálculo das constantes de formação de complexos de Cu(II) de 2-piridinoformamida tiossemicarbazonas

Através de titulações potenciométricas, estudamos a interação entre o íon Cu(II) e as tiossemicarbazonas H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, em solução aquosa, para determinar as espécies presentes no equilíbrio e calcular suas respectivas constantes de formação. Para esse cálculo, os valores das constantes calculadas, no item anterior, para as tiossemicarbazonas e os valores das constantes de formação das espécies hidroxiladas: Cu(OH)<sup>+</sup>, Cu(OH)<sub>2</sub>, Cu(OH)<sub>3</sub><sup>-</sup> e Cu(OH)<sub>4</sub><sup>2-</sup> [32], foram considerados.

A 100 mL de solução de H2Am4DH, H2Am4Me, H2Am4Et ou H2Am4Ph, de concentração 1,0 x  $10^{-3}$  mol L<sup>-1</sup>, contendo 1% de DMSO, foi adicionado 10,0 mL de solução de nitrato cúprico, Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O, 1,0 x  $10^{-2}$  mol L<sup>-1</sup>. Desse modo a proporção Cu:L na solução é de 1:1. A mistura foi titulada, a 25 °C, com uma solução de KOH 1,0 x  $10^{-1}$  mol L<sup>-1</sup>, após adição de 10,0 mL de KNO<sub>3</sub> 1,2 mol L<sup>-1</sup>. Os dados obtidos a partir das curvas potenciométricas foram tratados utilizando o programa HYPERQUAD [24].

No estado sólido N(4)-dimetil 2-piridinoformamida tiossemicarbazona, H2Am4DM, reage com CuCl<sub>2</sub>.H<sub>2</sub>O e Cu(OAc)<sub>2</sub>.H<sub>2</sub>O formando [Cu(HAm4DM)Cl<sub>2</sub>], [Cu(Am4DM)Cl] e [Cu(Am4DM)(OAc)] [33]. Desse modo, sugerimos que, em solução aquosa, os seguintes equilíbrios poderiam estar presentes:

$$Cu^{2+}(aq) + HL(aq) \Longrightarrow CuHL^{2+}(aq)$$
(1)

$$Cu^{2+}(aq) + HL(aq) \Longrightarrow CuL^{+}(aq) + H^{+}(aq)$$
(2)

$$Cu^{2+}(aq) + HL(aq) + OH^{-}(aq) \Longrightarrow CuL(OH)(aq) + H^{+}(aq)$$
(3)

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{HL}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}) = \operatorname{CuL}(\operatorname{OH})_{2}^{-}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$$
(4)

Os melhores resultados foram obtidos supondo a formação das espécies  $CuL^+$  e CuL(OH), mostradas nos equilíbrios (2) e (3).

A Figura 3.6 mostra as curvas de titulação potenciométrica teórica e experimental para os sistemas Cu:tiossemicarbazona. Os resultados teóricos e experimentais estão em boa concordância. Em todos os casos, observa-se uma inflexão quando o volume de KOH adicionado está em torno de 1,0 mL.



Figura 3.6 - Curvas de titulação potenciométrica teórica e experimental para os sistemas Cu:tiossemicarbazonas na proporção metal ligante 1:1: (a) Cu:H2Am4DH, (b) Cu:H2Am4Me, (c) Cu:H2Am4Et e (d) Cu:H2Am4Ph

A Tabela 3.3 lista os valores dos logaritmos das constantes de formação das espécies  $CuL^+$  e CuL(OH). Os valores obtidos foram refinados até o menor desvio padrão.

Tabela 3.3 – Logaritmo das constantes de formação das espécies CuL<sup>+</sup> e CuL(OH) presentes no equilíbrio envolvendo o íon Cu(II) e as 2-piridinoformamida tiossemicarbazonas

| Sistema    | $\log eta_{\operatorname{CuL}^+}$ | $\log \beta_{\text{CuL(OH)}}$ |
|------------|-----------------------------------|-------------------------------|
| Cu:H2Am4DH | 16,93 ± 0,08                      | $6{,}16\pm0{,}04$             |
| Cu:H2Am4Me | $16{,}50\pm0{,}03$                | $6{,}34\pm0{,}05$             |
| Cu:H2Am4Et | $15,\!05\pm0,\!04$                | $6{,}92\pm0{,}08$             |
| Cu:H2Am4Ph | 13,49 ± 0,06                      | 9,93 ± 0,05                   |

Em todos os casos, as constantes de formação das espécies do tipo CuL<sup>+</sup> são maiores que as constates das espécies do tipo CuL(OH). Os valores de  $\beta_{CuL^+}$ são próximos quando  $L = 2Am4DH^{-} e 2Am4Me^{-}$ , provavelmente porque a formação do primeiro complexo é favorecida por efeitos estéricos e a formação do segundo complexo é favorecida por efeitos eletrônicos, devido ao caráter doador do grupo metila, mencionado anteriormente. Para Cu2Am4Et<sup>+</sup>, o valor de  $\beta_{CuL}$  + é menor que aqueles encontrados para os dois primeiros. Embora a formação desse complexo também seja favorecida por efeitos eletrônicos, ela não é favorecida por efeito entérico quando comparada aos anteriores, uma vez que o gurpo etila é mais volumoso que os grupos hidrogênio e metila. A formação de Cu2Am4Ph<sup>+</sup> não é favorecida por efeitos eletrônicos e nem por efeito estérico, quando comparado aos demais, portanto, esse composto é o que apresenta menor valor para  $\beta_{CuL^+}$ . Observa-se um aumento dos valores de  $\beta_{CuL^+}$ ao longo da série: Cu:H2Am4DH > Cu:H2Am4Me > Cu:H2Am4Et > Cu:H2Am4Ph. A tendência observada para os valores de  $\beta_{CuL(OH)}$  é inversa, provavelmente porque os ligantes mais básicos repelem mais fortemente o grupo OH<sup>-</sup>.

A partir dos valores obtido para log  $\beta_{CuL^+}$  e log  $\beta_{CuL(OH)}$  foram gerados diagramas de distribuição de espécies em função do pH para os sistemas Cu:L (L= 2Am4DH<sup>-</sup>, 2Am4Me<sup>-</sup>, 2Am4Et<sup>-</sup> e 2Am4Ph<sup>-</sup>) (Figura 3.7).

Observa-se que os resultados obtidos para os sistemas Cu:H2Am4DH e Cu:H2Am4Me (Figura 3.7a e b) são bastante semelhantes. Nesses casos, a espécie  $CuL^+$  predomina entre pH 2 e 9,5. A partir desse pH, CuL(OH) passa a coexistir com CuL<sup>+</sup>.

Para o sistema Cu:H2Am4Et (Figura 3.7c) o diagrama de distribuição de espécies em função do pH mostra que a espécie  $CuL^+$  predomina até pH 7,5. Entre pH 7,5 e 8,5,  $CuL^+$  e CuL(OH) coexistem no equilíbrio. A partir de pH 8,5 CuL(OH) passa a prevalecer.

Para o sistema Cu:H2Am4Ph (Figura 3.7d) a espécie CuL<sup>+</sup> só aparece em pH ácido, até aproximadamente 5. A partir desse pH, CuL(OH) é a única espécie presente no equilíbrio.

Nos três primeiros casos, a espécie  $[Cu(OH)_4]^{2-}$  aparece em pH aproximadamente igual a 11.



Figura 3.7 - Diagramas de distribuição de espécies em função do pH: (a) Cu:H2Am4DH, (b) Cu:H2Am4Me, (c) Cu:H2Am4Et e (d) Cu:H2Am4Ph

Em pH fisiológico (pH = 7,4), apenas uma espécie (CuL<sup>+</sup>) esta presente nos sistemas Cu:H2Am4DH e Cu:H2Am4Me. No sistema Cu:H2Am4Et, CuL<sup>+</sup> e CuL(OH) coexistem. No sistema Cu:H2Am4Ph observa-se, igualmente, apenas uma espécie, mas nesse casos trata-se de CuL(OH).

A interação entre o íon Cu(II) e as tiossemicarbazonas H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, em solução aquosa, na proporção Cu:L 1:1, foi monitorada por espectroscopia de absorção na região do UV-vis. As medidas foram feitas após cada adição de 0,1 mL de KOH. Os resultados mais relevantes são apresentados abaixo.

Para os sistemas Cu:H2Am4DH, Cu:H2Am4Me e Cu:H2Am4Et os espectros obtidos mostram uma única banda de absorção na região do visível entre pH 3,7 e 5,8 (Figura 3.8a, b e c), atribuída a transição d-d do íon complexo CuL<sup>+</sup>, que é a única espécie presente nessa faixa de pH, nesses três sistemas (ver Figura 3.7a, b e c). Essa banda, observada inicialmente em 616 nm ( $\epsilon = 97,5 \text{ mol}^{-1} \text{ cm}^{-1}$ ), 603 nm ( $\epsilon = 110,8 \text{ mol}^{-1} \text{ cm}^{-1}$ ) e 593 nm ( $\epsilon = 145,2 \text{ mol}^{-1} \text{ cm}^{-1}$ ) para

Cu:H2Am4DH, Cu:H2Am4Me e Cu:H2Am4Et, respectivamente, desloca-se, nos dois primeiros casos, para região de maior energia, 602 nm e 587 nm, com o aumento do pH. Para o sistema Cu:H2Am4Et não foi possível observar esse deslocamento. Em pH > 5,8 as soluções começam a ficar turvas e os espectros não apresentam banda característica. Na faixa de pH que os espectros de UV-vis foram obtidos, a espécie CuL<sup>+</sup> não está presente no sistema Cu:H2Am4Ph.



Figura 3.8 - Espectros de absorção na região do visível para os complexos: (a) Cu2Am4DH<sup>+</sup>, (b) Cu2Am4Me<sup>+</sup>, (c) Cu2Am4Et<sup>+</sup> ([Cu<sup>2+</sup>] = 1,0 x 10<sup>-2</sup> mol L<sup>-1</sup>, [H2Am4R] = 1,0 x 10<sup>-3</sup> mol L<sup>-1</sup> 1% DMSO,  $\mu$  = 0,1 mol L<sup>-1</sup>, 25°C)

## Cálculo das constantes de formação de complexos de Fe(III) de 2-piridinoformamida tiossemicarbazonas

Através de titulações potenciométricas, estudamos a interação entre o íon Fe(III) e as tiossemicarbazonas H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, em solução aquosa, para determinar as espécies presentes no equilíbrio e calcular suas respectivas constantes de formação. Para esse cálculo, os valores das constantes calculadas para as tiossemicarbazonas livres e os valores das constantes de formação das espécies hidroxiladas:  $Fe(OH)^{2+}$ ,  $Fe(OH)_{2}^{+}$ ,  $Fe(OH)_{3}$  e Fe(OH)<sub>4</sub><sup>-</sup> [32], foram considerados.

A 100 mL de solução de H2Am4DH, H2Am4Me, H2Am4Et ou H2Am4Ph, de concentração 1,0 x  $10^{-3}$  mol L<sup>-1</sup>, contendo 1% de DMSO, foi adicionado 5,0 mL de solução de cloreto férrico, FeCl<sub>3</sub>.6H<sub>2</sub>O, de concentração 1,0 x  $10^{-2}$  mol L<sup>-1</sup>. Desse modo a proporção Fe:L na solução é de 1:2. A mistura foi titulada, a 25 °C, com uma solução de KOH, 1,0 x  $10^{-1}$  mol L<sup>-1</sup>, após adição de 10,0 mL de KNO<sub>3</sub> 1,2 mol L<sup>-1</sup>. Os dados obtidos a partir das curvas potenciométricas foram tratados utilizando o programa HYPERQUAD [24].

No estado sólido, a reação entre FeCl<sub>3</sub>.6H<sub>2</sub>O e H2Am4DH, H2Am4Me ou H2Am4Et leva a formação de  $[Fe(L)_2]Cl$  e a reação entre FeCl<sub>3</sub>.6H<sub>2</sub>O e H2Am4Ph leva a formação de  $[Fe(HL)Cl_3]$  (ver Capítulo 4). Por outro lado, a literatura relata que 2-formilpiridina tiossemicarbazona (HFPT) e 2-acetilpiridina tiossemicarbazona (HAPT) interagem com o íon Fe(III) formando as seguintes espécies em solução aquosa:  $[Fe(HFPT)_2]^{3+}$  e  $[Fe(HAPT)(APT)]^{2+}$  [18]. Desse modo, sugerimos que, em solução aquosa, os seguintes equilíbrios poderiam estar presentes:

$$Fe^{3+}(aq) + HL(aq) \Longrightarrow FeHL^{3+}(aq)$$
 (1)

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{HL}(\operatorname{aq}) = \operatorname{FeL}^{2+}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$$
(2)

$$Fe^{3+}(aq) + 2HL(aq) \Longrightarrow Fe(HL)_2^{3+}(aq)$$
(3)

$$Fe^{3+}(aq) + 2HL(aq) \implies Fe(HL)(L)^{2+}(aq) + H^{+}(aq)$$
(4)

$$\operatorname{Fe}^{3^{+}}(\operatorname{aq}) + 2\operatorname{HL}(\operatorname{aq}) \Longrightarrow \operatorname{Fe}(\operatorname{L})_{2}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq})$$
(5)

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{HL}(\operatorname{aq}) + \operatorname{OH}^{-}(\operatorname{aq}) \Longrightarrow \operatorname{FeL}(\operatorname{OH})^{+}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$$
(6)

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{HL}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}) = \operatorname{FeL}(\operatorname{OH})_{2}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$$
(7)

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{HL}(\operatorname{aq}) + \operatorname{3OH}^{-}(\operatorname{aq}) = \operatorname{FeL}(\operatorname{OH})_{3}^{-}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$$
(8)

Para o sistema Fe:H2Am4DH, os melhores resultados foram obtidos supondo a formação de apenas uma espécie,  $Fe(L)_2^+$ , mostrada no equilíbrio (5). Para os sistemas Fe:H2Am4Me e Fe:H2Am4Et as seguintes espécies foram sugeridas:  $FeL^{2+}$ ,  $Fe(L)_2^+$ ,  $FeL(OH)^+$ ,  $FeL(OH)_2$  e  $FeL(OH)_3^-$ , mostradas nos equilíbrios (2), (5), (6), (7) e (8). Portanto, nos três primeiros casos, observa-se a formação de  $Fe(L)_2^+$ , conforme reportado no estado sólido (ver Capítulo 4).

No sistema Fe:H2Am4Ph, a espécie  $Fe(L)_2^+$  não esta presente e os melhores resultados foram obtidos supondo a formação de  $FeHL^{3+}$ ,  $FeL^{2+}$ ,  $FeL(OH)^+$ ,  $FeL(OH)_2$  e  $FeL(OH)_3$ , mostrados nos equilíbrios (1), (2), (6), (7) e (8). No estado sólido, esse complexo também não se forma, provavelmente devido a impedimento estérico, uma vez que o grupo fenil é bastante volumoso.

A Figura 3.9 mostra as curvas de titulação potenciométrica teórica e experimental para os sistemas Fe:tiossemicarbazona. Os resultados teóricos e experimentais estão em boa concordância.



Figura 3.9 - Curvas de titulação potenciométrica teórica e experimental para os sistemas Fe:tiossemicarbazonas na proporção metal ligante 1:2: (a) Fe:H2Am4DH, (b) Fe:H2Am4Me, (c) Fe:H2Am4Et e (d) Fe:H2Am4Ph

A Tabela 3.4 lista os valores dos logaritmos das constantes de formação das espécies sugeridas. Os valores foram refinados até o menor desvio padrão ser

obtido.

|                                           | Fe:H2Am4DH         | Fe:H2Am4Me         | Fe:H2Am4Et         | Fe:H2Am4Ph         |
|-------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| $\log \beta_{\rm FeL}^{_{2+}}$            | -                  | 14,96 ± 0,02       | 15,08 ± 0,01       | 14,31 ± 0,03       |
| $\log \beta_{\rm FeHL}^{_{3+}}$           | -                  | -                  | -                  | $18,\!10\pm0,\!02$ |
| $\log \beta_{\mathrm{Fe}(\mathrm{L})2^+}$ | $25{,}42\pm0{,}01$ | $24{,}53\pm0{,}04$ | $24,\!22\pm0,\!02$ | -                  |
| $\log \beta_{\text{FeL(OH)}^+}$           | -                  | $8,\!05\pm0,\!02$  | $8{,}23\pm0{,}04$  | $11,\!53\pm0,\!05$ |
| $\log \beta_{\rm FeL(OH)2}$               | -                  | $1,\!18\pm0,\!02$  | $1,\!47\pm0,\!05$  | $8,\!25\pm0,\!04$  |
| $\log \beta_{\rm FeL(OH)3}$               | -                  | $-7,34 \pm 0,02$   | $-7,42 \pm 0,04$   | $1,\!74\pm0,\!04$  |
|                                           |                    |                    |                    |                    |

Tabela 3.4 – Logaritmos das constantes de formação das espécies presentes no equilíbrio envolvendo o íon Fe(III) e as 2-piridinoformamida tiossemicarbazonas

Os valores das constantes para a espécie FeL<sup>2+</sup>, presente nos sistemas Fe:H2Am4Me, Fe:H2Am4Et e Fe:H2Am4Ph, são próximos e da ordem de 1,0 x 10<sup>15</sup>. A espécie FeHL<sup>3+</sup> está presente apenas no sistema Fe:H2Am4Ph e sua constante de formação é maior que aquele da espécie análoga FeL<sup>2+</sup>. Conforme mencionado anteriormente, Fe(L)<sub>2</sub><sup>+</sup> está presente nos três primeiros sistemas e sua constante é da ordem de 1,0 x10<sup>24</sup>. Os valores dessa constante são menores que aqueles relatados na literatura para os compostos análogos: [Fe(HFPT)<sub>2</sub>]<sup>3+</sup> ( $\beta$  = 1,17 x 10<sup>30</sup>) e [Fe(HAPT)(APT)]<sup>2+</sup> ( $\beta$  = 2,29 x 10<sup>29</sup>).

A partir dos valores dos logaritmos das constantes de formação das espécies presentes em solução foram gerados gráficos de distribuição de espécies em função do pH (Figura 3.10).

O diagrama de distribuição de espécies para o sistema Fe:H2Am4DH (Figura 3.10a), mostra que o complexo  $[Fe(2Am4DH)_2]^{2+}$  começa a se formar em pH 3. Como mencionado anteriormente, essa é a única espécie presente no equilíbrio.

Para os sistemas Fe:H2Am4Me e Fe:H2Am4Et (Figura 3.10b e c), os diagramas de distribuição de espécies são semelhantes. O complexo  $[Fe(L)_2]^{2+}$  ocorre entre pH 4 e 9, no entanto sempre coexistindo com outras espécies hidroxiladas.

Para os sistema Fe:H2Am4Ph (Figura 3.10d) observa-se que o complexo  $[Fe(H2Am4Ph)]^{3+}$  só ocorre até pH 3, a partir desse pH prevalecem as espécies hidroxiladas.



Figura 3.10 - Diagramas de distribuição de espécies em função do pH para: (a) Fe:H2Am4DH, (b) Fe:H2Am4Me, (c) Fe:H2Am4Et e (d) Fe:H2Am4Ph

Em pH fisiológico (pH = 7,4), a espécie  $[Fe(L)_2]^{2+}$  é a única que está presente no sistema Fe:H2Am4DH e, esta mesma espécie, prevalece nos sistemas Fe:H2Am4Me e Fe:H2Am4Et. No sistema Fe:H2Am4Ph, a espécie que prevalece é FeL(OH)<sub>3</sub><sup>-</sup>.

A interação entre o íon Fe(III) e as tiossemicarbazonas H2Am4DH, H2Am4Me, H2Am4Et e H2Am4Ph, em solução aquosa, na proporção Fe;L 1:2, foi monitorada por espectroscopia de absorção na região do UV-vis. Os resultados mais relevantes são apresentados abaixo.

Para os sistemas Fe:H2Am4DH, Fe:H2Am4Me e Fe:H2Am4Et os espectros obtidos mostram duas bandas na região do visível entre pH 4,0 e 9,2 (Figura 3.11a, b e c).



Figura 3.11 - Espectro de absorção na região do visível para os complexos: (a)  $Fe(2Am4DH)_2^+$ , (b)  $Fe(2Am4Me)_2^+$ , (c)  $Fe(2Am4Et)_2^+$ . ([ $Fe^{2+}$ ] = 1,0 x 10<sup>-2</sup> mol L<sup>-1</sup>, [H2Am4R] = 1,0 x 10<sup>-3</sup> mol L<sup>-1</sup> 1% DMSO,  $\mu = 0,1$  mol L<sup>-1</sup>, 25°C)

Essas bandas são atribuídas a transição de transferência de carga do enxofre para o ferro e a transição d-d do íon complexo Fe(L)<sub>2</sub><sup>+</sup>, que é a espécie que prevalece nessa faixa de pH (ver Figura 13a, b e c) [11,18,29]. A banda d-d observada em 785 nm ( $\varepsilon$  = 849,8 mol<sup>-1</sup> cm<sup>-1</sup>), 782 nm ( $\varepsilon$  = 219,8 mol<sup>-1</sup> cm<sup>-1</sup>) e 773 nm ( $\varepsilon$  = 168,2 mol<sup>-1</sup> cm<sup>-1</sup>) e a banda de transferência de carga observada em 438 nm ( $\varepsilon$  = 7427,9 mol<sup>-1</sup> cm<sup>-1</sup>), 437 nm ( $\varepsilon$  = 2468,9 mol<sup>-1</sup> cm<sup>-1</sup>) e 433 nm ( $\varepsilon$  = 1404,1 mol<sup>-1</sup> cm<sup>-1</sup>) para Fe:H2Am4DH, Fe:H2Am4Me e Fe:H2Am4Et, respectivamente, não sofrem deslocamento com o aumento do pH. Para esses sistemas, os espectros obtidos representam à espécie Fe(L)<sub>2</sub><sup>+</sup> (ver Figura 3.10a, b e c). Como no sistema Fe:H2Am4Ph essa espécie não está presente (ver Figura 3.10d), não foi observado banda na região do visível.

Desse modo, as constantes de protonação,  $\beta_{\text{HL}} e \beta_{\text{H}_2\text{L}^+}$ , foram calculadas para as tiossemicarbazonas derivadas de 2-piridinoformamida. Os valores encontrados são próximos daqueles relatados na literatura para tiossemicarbazonas análogas. Podemos então concluir que, em solução aquosa, as 2-piridinoformamida tiossemicarbazonas reagem com  $Cu(NO_3)_2.3H_2O$  formando complexos do tipo  $[Cu(L)H_2O]^+$  e [Cu(L)OH] (L = ligante aniônico). As constantes de formação de todos os complexos formados foram calculadas.

Em solução aquosa, 2-piridinoformamida tiossemicarbazona reage com FeCl<sub>3</sub>.6H<sub>2</sub>O formando apenas  $[Fe(L)_2]^+$ . Seus derivados N(4)-metil e N(4)-etil formam complexos do tipo  $[Fe(L)]^{2+}$ ,  $[Fe(L)_2]^+$ ,  $[Fe(L)OH]^+$ ,  $[Fe(L)(OH)_2]^+$ , e  $[Fe(L)(OH)_3]^-$ . N(4)-feniltiossemicarbazona é o único ligante que não forma o complexo  $[Fe(L)_2]^+$ , provavelmente devido a impedimento estérico (L = ligante aniônico). As constantes de formação de todos os complexos formados foram calculadas.

Os dados obtidos em cada titulação são mostrados em ANEXO.